55.dos.cuatro Where & Whenever Performed My personal Swiping Designs Alter?
More details to have math some body: To-be even more certain, we’ll use the ratio from suits to swipes right, parse one zeros regarding the numerator or the denominator to at least one (essential generating real-respected logarithms), and then grab the absolute logarithm of value. Which statistic by itself won’t be including interpretable, although comparative complete trends would be.
bentinder = bentinder %>% mutate(swipe_right_rate = (likes / (likes+passes))) %>% mutate(match_rates = log( ifelse(matches==0,1,matches) / ifelse(likes==0,1,likes))) rates = bentinder %>% find(time,swipe_right_rate,match_rate) match_rate_plot = ggplot(rates) + geom_area(size=0.2,alpha=0.5,aes(date,match_rate)) + geom_simple(aes(date,match_rate),color=tinder_pink,size=2,se=Incorrect) + geom_vline(xintercept=date('2016-09-24'),color='blue',size=1) +geom_vline(xintercept=date('2019-08-01'),color='blue',size=1) + annotate('text',x=ymd('2016-01-01'),y=-0.5,label='Pittsburgh',color='blue',hjust=1) + annotate('text',x=ymd('2018-02-26'),y=-0.5,label='Philadelphia',color='blue',hjust=0.5) + annotate('text',x=ymd('2019-08-01'),y=-0.5,label='NYC',color='blue',hjust=-.4) + tinder_motif() + coord_cartesian(ylim = c(-2,-.4)) + ggtitle('Match Price Over Time') + ylab('') swipe_rate_plot = ggplot(rates) + geom_part(aes(date,swipe_right_rate),size=0.2,alpha=0.5) + geom_easy(aes(date,swipe_right_rate),color=tinder_pink,size=2,se=Not the case) + geom_vline(xintercept=date('2016-09-24'),color='blue',size=1) +geom_vline(xintercept=date('2019-08-01'),color='blue',size=1) + annotate('text',x=ymd('2016-01-01'),y=.